379 research outputs found

    Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses

    Get PDF
    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies

    The ICRA 2017 Robot Challenges [Competitions]

    Get PDF

    Haptic human-human interaction does not improve individual visuomotor adaptation

    Get PDF
    Haptic interaction between two humans, for example, parents physically supporting their child while it learns to keep balance on a bicycle, likely facilitates motor skill acquisition. Haptic human-human interaction has been shown to enhance individual motor improvement in a tracking task with a visuomotor rotation perturbation. These results are remarkable given that haptically assisting or guiding an individual rarely improves their motor improvement when the assistance is removed. We, therefore, replicated a study that reported benefits of haptic interaction between humans on individual motor improvement for tracking a target in a visuomotor rotation. Also, we tested the effect of more interaction time and stronger haptic coupling between the partners on individual performance improvement in the same task. We found no benefits of haptic interaction on individual motor improvement compared to individuals who practised the task alone, independent of interaction time or interaction strength. We also found no effect of the interaction partner's skill level on individual motor improvement

    Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    Get PDF
    Background\ud \ud Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. \ud \ud Methods\ud \ud The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. \ud \ud Results\ud \ud In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. \ud \ud Conclusion\ud \ud The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate leg
    corecore